Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Nicholas A. Barnes, Stephen M. Godfrey,* Ruth T. A. Halton, Imrana Mushtaq and Robin G. Pritchard

School of Chemistry, The University of Manchester (North Campus), Manchester M60 1QD, England

Correspondence e-mail:
stephen.m.godfrey@manchester.ac.uk

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.039$
$w R$ factor $=0.101$
Data-to-parameter ratio $=10.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
An orthorhombic polymorph of dichlorotris(pentafluorophenyl)phosphorane

An orthorhombic form of dichlorotris(pentafluorophenyl)phosphorane, $\mathrm{C}_{18} \mathrm{Cl}_{2} \mathrm{~F}_{15} \mathrm{P}$, has been obtained as the product of the reaction between PhSeCl and $\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \mathrm{P}$, and is a polymorph of the previously reported monoclinic form obtained from the reaction of $\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \mathrm{P}$ with Cl_{2}. The molecule displays nearly perfect trigonal-bipyramidal geometry, and features a number of intermolecular F...F contacts, which lead to fluorous domains in the crystal packing.

Comment

Compounds of formula $R_{3} \mathrm{PCl}_{2}$ are usually ionic in the solid state (Dillon et al., 1976; Godfrey et al., 1996, 1997; Ruthe et al., 1997) and solution (Beveridge et al., 1966; Wiley \& Stine, 1967; Harris \& Ali, 1968; Godfrey et al., 1997); however, molecular five-coordinate trigonal-bipyramidal structures have been observed for $R_{3}=\mathrm{Ph}_{3},\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right) \mathrm{Ph}_{2}$ and $\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ (Godfrey et al., 1997; Godfrey, McAuliffe, Pritchard \& Sheffield, 1998). Whilst the trigonal-bipyramidal form of $\mathrm{Ph}_{3} \mathrm{PCl}_{2}$ ionizes in solution, the analogous compounds containing highly electron withdrawing $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups retain their trigonal-bipyramidal geometry in solution. We have previously described the structure of the monoclinic form of $\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \mathrm{PCl}_{2}$ (space group $P 2_{1} / c$), prepared from $\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \mathrm{P}$ and dichlorine (Godfrey et al., 1997). We now report that the same compound is also formed when phenylselenenyl chloride is reacted with $\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \mathrm{P}$; however the crystals obtained were an orthorhombic polymorph of $\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \mathrm{PCl}_{2}$, (I) (see Fig. 1 and Table 1).

(I)

Compound (I) displays nearly perfect trigonal-bipyramidal geometry, although neither of the two polymorphs of $\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \mathrm{PCl}_{2}$ display crystallographically imposed D_{3}

Received 5 June 2006
Accepted 8 June 2006

Figure 1
The structure of (I). Displacement ellipsoids are shown at the 30% probability level.
symmetry, unlike the analogous trigonal-bipyramidal $\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \mathrm{PBr}_{2}$, space group $R \overline{3} c$ (Godfrey, McAuliffe, Mushtaq et al., 1998). The $\mathrm{P}-\mathrm{Cl}$ bonds in (I) are nearly equivalent and slightly shorter than observed in the monoclinic polymorph $[\mathrm{P}-\mathrm{Cl}=2.211$ (2) \AA; Godfrey et al., 1997]. However, the $\mathrm{P}-$ Cl bonds are rather shorter than observed for $\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right) \mathrm{Ph}_{2} \mathrm{PCl}_{2}$ [$\mathrm{P}-\mathrm{Cl}=2.244$ (2) and 2.241 (3) \AA; Godfrey et al., 1997] and $\mathrm{Ph}_{3} \mathrm{PCl}_{2}[\mathrm{P}-\mathrm{Cl}=2.225$ (1)-2.280 (2) Å; Godfrey, McAuliffe, Pritchard \& Sheffield, 1998), reflecting the increased net electron-withdrawing capability of three $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups. The $\mathrm{Cl}-\mathrm{P}-\mathrm{Cl}$ angle is essentially linear, and the remaining angles around the P atom are close to ideal trigonal-bipyramidal geometry. The $\mathrm{C}-\mathrm{F}$ bonds in the molecule vary in distance between 1.329 (3) and 1.349 (3) A, with the C-F bonds to the para- F atoms being the shortest in each $\mathrm{C}_{6} \mathrm{~F}_{5}$ group. A number of intermolecular F‥F interactions, shorter than the sum of the van der Waals radii of two F atoms, ($2.94 \AA$), are observed, which vary in length between 2.700 (2) \AA and 2.900 (2) \AA. The extended structure thus features extensive aggregation of the fluorous domains.

Experimental

The title compound was prepared by addition of $\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \mathrm{P}$ (Aldrich) $\left(0.273 \mathrm{~g}, 5.0 \times 10^{-4} \mathrm{~mol}\right)$ to a freshly distilled diethyl ether solution $(50 \mathrm{ml})$ containing PhSeCl (Aldrich) $\left(0.196 \mathrm{~g}, 1.0 \times 10^{-3} \mathrm{~mol}\right)$. The colour of the solution gradually changed from orange to yellow over several days. The solvent was reduced in volume to 10 ml , and colourless crystals of (I) formed at 273 K over several weeks. The spectroscopic data of (I) match the literature values (Godfrey et al., 1997).

Crystal data
$\mathrm{C}_{18} \mathrm{Cl}_{2} \mathrm{~F}_{15} \mathrm{P}$
$Z=8$
$M_{r}=603.05$
Orthorhombic, Pbca
$D_{x}=2.113 \mathrm{Mg} \mathrm{m}^{-3}$
$a=16.7367$ (5) \AA
$b=11.3713$ (2) \AA
$c=19.9214$ (5) \AA
$V=3791.40(16) \AA^{3}$
Mo $K \alpha$ radiation
Mo $K \alpha$ radiation
$\mu=0.58 \mathrm{~mm}^{-1}$
$T=150$ (2) K
Prism, colourless
$0.2 \times 0.15 \times 0.1 \mathrm{~mm}$

Data collection

Nonius KappaCCD diffractometer φ and ω scans
Absorption correction: multi-scan (Blessing, 1995)
$T_{\text {min }}=0.893, T_{\text {max }}=0.944$
19042 measured reflections 3458 independent reflections 2634 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.071$
$\theta_{\text {max }}=25.3^{\circ}$

Refinement

Refinement on F^{2}

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0439 P)^{2}\right. \\
\quad+3.0443 P] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.38 \mathrm{e}^{-3} \\
\Delta \rho_{\min }=-0.54 \mathrm{e}^{-3}
\end{gathered}
$$

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

C1-P1	$1.820(3)$	$\mathrm{P} 1-\mathrm{Cl} 2$	$2.1995(10)$
$\mathrm{C} 7-\mathrm{P} 1$	$1.819(3)$	$\mathrm{P} 1-\mathrm{Cl} 1$	$2.2005(10)$
$\mathrm{C} 13-\mathrm{P} 1$	$1.821(3)$		
$\mathrm{C} 7-\mathrm{P} 1-\mathrm{C} 1$	$118.64(13)$	$\mathrm{C} 13-\mathrm{P} 1-\mathrm{Cl} 2$	$89.51(9)$
$\mathrm{C} 7-\mathrm{P} 1-\mathrm{C} 13$	$121.49(13)$	$\mathrm{C} 7-\mathrm{P} 1-\mathrm{Cl} 1$	$90.12(9)$
$\mathrm{C} 1-\mathrm{P} 1-\mathrm{C} 13$	$119.86(13)$	$\mathrm{C} 1-\mathrm{P} 1-\mathrm{Cl} 1$	$90.01(9)$
$\mathrm{C} 7-\mathrm{P} 1-\mathrm{Cl} 2$	$90.26(9)$	$\mathrm{C} 13-\mathrm{P} 1-\mathrm{Cl} 1$	$89.74(9)$
$\mathrm{C} 1-\mathrm{P} 1-\mathrm{Cl} 2$	$90.37(9)$	$\mathrm{Cl} 2-\mathrm{P} 1-\mathrm{Cl} 1$	$179.25(5)$

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski \& Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski \& Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

We are grateful to the Engineering and Physical Sciences Research Council (EPSRC) for a research studentship to RTAH, and also for support of the UMIST X-ray facility (Research Initiative Grant).

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Beveridge, A. D., Harris, G. S. \& Inglis, F. (1966). J. Chem. Soc. A, pp. 520-528. Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Dillon, K. B., Lynch, R. J., Reeve, R. N. \& Waddington, T. C. (1976). J. Chem. Soc. Dalton Trans. pp. 1243-1248.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Godfrey, S. M., McAuliffe, C. A., Mushtaq, I., Pritchard, R. G. \& Sheffield, J. M. (1998). J. Chem. Soc. Dalton Trans. pp. 3815-3818.

Godfrey, S. M., McAuliffe, C. A., Pritchard, R. G. \& Sheffield, J. M. (1996). Chem. Commun. pp. 2521-2522.
Godfrey, S. M., McAuliffe, C. A., Pritchard, R. G. \& Sheffield, J. M. (1998). Chem. Commun. pp. 921-922.
Godfrey, S. M., McAuliffe, C. A., Pritchard, R. G., Sheffield, J. M. \& Thompson, G. M. (1997). J. Chem. Soc. Dalton Trans. pp. 4823-4827.

organic papers

Harris, G. S. \& Ali, M. F. (1968). Tetrahedron Lett. 9, 37-38. Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York, Academic Press.

Ruthe, F., du Mont, W.-W. \& Jones, P. G. (1997). Chem. Commun. pp. 19471948.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Wiley, G. A. \& Stine, W. R. (1967). Tetrahedron Lett. 8, 2321-2324.

[^0]: © 2006 International Union of Crystallography All rights reserved

